Interval Tournaments

نویسندگان

  • David E. Brown
  • Arthur H. Busch
  • J. Richard Lundgren
چکیده

A directed graph is an interval digraph if to each vertex v there corresponds an ordered pair of intervals (Sv , Tv) such that u → v if and only if Su ∩ Tv 6= ∅. A tournament is an oriented complete graph. We characterize the tournaments that are interval digraphs via the existence of a large transitive subtournament and by forbidden subtournaments. A bipartite graph is an interval bigraph if to each vertex there corresponds an interval such that vertices are adjacent if and only if their corresponding intervals intersect and each vertex belongs to a different partite set. We capitalize on the equivalence of the models for interval digraphs and interval bigraphs and use results of Das, Roy, Sen, and West for interval digraphs, and results of Müller for interval bigraphs. c © (Year) John Wiley & Sons, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

t-Pancyclic Arcs in Tournaments

Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...

متن کامل

Completing orientations of partially oriented graphs

We initiate a general study of what we call orientation completion problems. For a fixed class C of oriented graphs, the orientation completion problem asks whether a given partially oriented graph P can be completed to an oriented graph in C by orienting the (non-oriented) edges in P . Orientation completion problems commonly generalize several existing problems including recognition of certai...

متن کامل

A Further Step Towards an Understanding of the Tournament Equilibrium Set

We study some problems pertaining to the tournament equilibrium set (τ for short). A tournament H is a τ-retentive tournament if there is a tournament T which has a minimal τ-retentive set R such that T [R] is isomorphic to H. We study τ-retentive tournaments and achieve many significant results. In particular, we prove that there are no τretentive tournaments of size 4, only 2 non-isomorphic τ...

متن کامل

Constructions over Tournaments

We investigate tournaments that are projective in the variety that they generate, and free algebras over partial tournaments in that variety. We prove that the variety determined by three-variable equations of tournaments is not locally finite. We also construct infinitely many finite, pairwise incomparable simple tournaments.

متن کامل

Local Tournaments and In - Tournaments

Preface Tournaments constitute perhaps the most well-studied class of directed graphs. One of the reasons for the interest in the theory of tournaments is the monograph Topics on Tournaments [58] by Moon published in 1968, covering all results on tournaments known up to this time. In particular, three results deserve special mention: in 1934 Rédei [60] proved that every tournament has a directe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2007